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Abstract—This paper presents an incremental analytical model for theoretically predicting the
strain hardening hysteretic behaviour of a steel brace member subjected to cyclic loading. The model
consists of a pin-ended bracing member with a plastic hinge at midspan. Braces with other end
conditions are handled using the effective length concept. An incremental solution procedure is
herein employed where the incremental axial force d P is related to the incremental axial deformation
dd by means of a tangent stiffness coefficient K,. Stepwise regression analysis is used to approximate
the plastic conditions for the steel Universal Column (UC) section. Different cross section shapes
of a bracing member can be accounted for by specifying the different yield surface approximations.
Several simple one-surface type hardening rules are employed to evaluate the effect on the analytical
prediction of a steel bracing cyclic behaviour. The analytical results are compared with available
experimental data on actual brace members, confirming the validity of the analytical model
developed for practical use. The proposed model has been incorporated into an inelastic dynamic
frame analysis program to evaluate the inelastic seismic response of the braced steel structures.
© 1997 Elsevier Science Ltd.

1. INTRODUCTION

The seismic performance of steel structures is highly dependent on the hysteretic behaviour
of their members. The assessment of this behaviour can be achieved by means of exper-
imental tests and by the use of analytical models that take into account the phenomena
involved in a non-linear response. The brace members are recognised to be a main source
of earthquake energy dissipation in the concentrically braced steel frames. However, the
cyclic inelastic behaviour of such braces is quite complex. The physical phenomena, which
influence the hysteretic behaviour of the brace members, are the buckling of an element.
yielding of material, local buckling, Bauschinger effect, etc. To better predict the seismic
response of the braced frame structures, the efficient and versatile analytical brace model
must be developed to allow the computer study to be made on large structural systems.
Experimental results (Black ez al., 1980) have helped to identify the important physical
responses of braces subjected to cyclic inelastic buckling. Along with the formation of
plastic hinges, plastic axial deformation was found to contribute significantly to the total
axial deformation of braces with low slenderness ratios (kL/r < 60) and to have a major
effect on the magnitude of midspan lateral deflections. Plastic axial deformation also
influences the behaviour of members with intermediate to high slenderness ratios
(kL/r > 60). In experiments, the hysteretic growth in specimens was observed, which can
be attributed to plastic axial deformation in the hinges that occurs during tension loading
while restraightening a buckled member.

Recently, several analytical models have been developed to represent the cyclic behav-
iour of steel elements. These models can be divided into three types of brace modelling
techniques : finite elements, phenomenological brace models and physical theory models.

The finite element approach generally subdivides a brace longitudinally into a series
of elements. Each of these may be subdivided again into a number of elements. In this
approach, the cross section geometry and material properties of each element are defined,
and a large displacement analysis of the complete system is performed. The advantages of
the finite element approach is its general applicability to many types of problems, and that
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Fig. 1. Deformed shape of a brace member.

only the member geometry and material properties need to be defined. Kayvani and
Barzegar (1996) have recently employed this approach for modelling the seismic behaviour
of an offshore platform. A limitation of this approach is that it is computationally expensive.

Phenomenological models are based on simplified hysteretic rules which only mimic
the observed force—displacement curves of a brace member. Models of this type have been
developed by Higginbotham (1973), Nilforoushan (1973), Singh (1977), Jain and Goel
(1978) and Maison and Popov (1980). Accurate representation of member cyclic behaviour
is possible with phenomenological models when the shape of the hysteretic loops is known.
The use of such models requires specification of numerous empirical input parameters for
each element analysed.

Physical theory models incorporate simplified theoretical formulations based on physi-
cal considerations that allow the cyclic inelastic behaviour to be computed. Unlike the
phenomenological models, the input data for physical theory models is based on the
material properties and geometric properties of a member. Some of the models are reviewed
here to give a better understanding of the various approaches towards the formulation of
physical theory models.

Physical theory models usually consist of elastic beam segments with an elastoplastic
cell representing the assumed location of a plastic hinge (Fig. 1). Three types of material
models have been employed : (1) the elasto-perfectly plastic; (2) the bi-linear stress—strain
relationship ; and (3) the piecewise linear stress—strain relationship. Some researchers (Non-
aka, 1973; 1977 ; Gugerli and Goel, 1982) formulated a general elastic—plastic solution for
the hysteretic behaviour of a prismatic bar subjected to repeated axial loading. They
assumed the elasto-perfectly plastic material behaviour in the analysis under the combined
action of axial force and bending moment. They solved the beam-column equation directly,
obtaining sine curves for the deflected shape of the beam segments under compression and
hyperbolic sine curves for beam segments under tension. lkeda proposed a refined physical
theory brace model (Ikeda and Mahin, 1984) which was based on Gugerli’s formulation.
The changes made to Gugerli’s model were to replace the initial modulus of elasticity E by
the tangent modulus of elasticity E| so as to better replicate material non-linearities.

Shibata (1982) derived a closed-form solution for a bar of ideal I-section with a bi-
linear stress—strain relationship. For a bar of arbitrary cross section with a piecewise linear
stress—strain relationship, an incremental load—displacement relationship was obtained in
an analytical form. His model was composed of an elastic-plastic spring and two straight
segments. In the actual calculation, the midsection should be divided into a finite number
of strip elements, in order to calculate the restoring moment and axial force in the spring
for the assumed material behaviour. So, the application of this procedure is limited to
bracing members with special cross section shapes. A similar model has been proposed by
Ballio and Perotti (1987) assuming a bi-linear material model. Although the method used
by Shibata, and Ballio and Perotti seems attractive because it is possible to account for the
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gradual spread of plasticity over the critical cross section and to take into consideration
the local buckling effects, it requires solving non-linear equations at each fibre so many
times that it becomes inappropriate for the dynamic analysis of structural systems with
large numbers of bracing members. Furthermore, the formulations of the above models
express axial displacement as a function of an axial force. Thus, these models necessitate
additional iterations in order to estimate the value of axial force for a given displacement.
Moreover, these formulations are inconsistent with the finite element analysis procedure
used to analyse the dynamic response of braced structures.

The refined physical theory brace model (Ikeda and Mahin, 1984) was chosen for
further development of the incremental physical theory brace model (Remennikov and
Walpole, 1995). The incremental brace model is compatible with the conventional dynamic
analysis computer programs and incorporates refinements from recent experimental work.

Tests carried out in the Civil Engineering Laboratory at the University of Canterbury
on a series of struts (Leowardi, 1994 ; Walpole, 1995) revealed some limitations of available
physical brace models which can be attributed to the material models assumed in previously
developed approaches. Experimental results (Ikeda and Mahin, 1984 ; Leowardi, 1994)
have proved that the struts may exhibit significant strain hardening and strain softening
during later cycles of loading. Therefore, it was decided to improve an incremental physical
theory brace model (Remennikov and Walpole, 1995) with better implementation of the
Bauschinger effect so as to enable the model to represent the strain hardening and strain
softening effects. Bearing in mind that the proposed model was intended to be incorporated
into the inelastic dynamic analysis program in order to evaluate the response of the braced
systems with a large number of bracings, a number of simple one-surface type hardening
rules was studied for the sake of computer efficiency. Also, the one-surface type hardening
models required less empirical parameters to be specified from tests than the two- or
multiple-surface type hardening models (Mroz, 1983 ; Tseng and Lee, 1983; Jiang and
Sehitoglu, 1996). The hardening rules employed were those of Prager (1956) ; Phillips and
Lee (1977) and Ziegler {(1959), and their combinations, with the isotropical hardening
model. Some details on the inelastic behaviour of a brace member under cyclic loading are
presented in the next section.

2. CYCLIC BEHAVIOUR OF A BRACE MEMBER

2.1. Zone definition

Figure 2 shows the typical hysteretic behaviour of a steel member when subject to axial
cyclic loading. It is common to divide a cycle into a set of zones, corresponding to different
behavioural characteristics. Following the approach of Tkeda and Mahin (1984), a cycle is
divided into four general categories for a better representation of cyclic behaviour: the
elastic zone, plastic zone, elastic buckling zone and yield zone. The terms “‘elastic” and
“plastic” correspond to the state of the plastic hinge. while the term “yield” is associated
with the state of the beam segments. After that, the elastic zone is subdivided into the elastic
shortening (both member length and axial load decrease) and the elastic lengthening
zone (both member length and axial load increase). Finally, the elastic shortening, elastic
lengthening and plastic zones are further subdivided into the zones in compression and
those in tension. As a result, the eight zones are incorporated to properly define the axial
force—deformation curve, axial force-plastic hinge moment curve and axial force—plastic
hinge rotation curve (Fig. 2). The detailed description of each zone is given elsewhere
(Remennikov and Walpole, 1996). Within the scope of the paper, the plastic behaviour of
a brace is briefly discussed.

Zone P1 is the plastic zone in compression. In this state, a yield hinge has been formed
at the cenire, and an increasing deflection is accompanied by the large rotation and plastic
axial deformation at the hinge. It is evident that the equilibrium of the half member is
maintained only under decreasing compression. In this zone, the P—M curves tend to follow
the theoretical fully plastic interaction curve. Zone P2 is the plastic zone in tension. Elastic
behaviour ceases to continue to a point at which the yield limit is reached, with positive
axial load P. Plastic action again takes place with the stress point on the yield surface. The
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Fig. 2. Definition of different zones: (a) P-é curve; (b) P-M curve; (c) P—¢ curve.

plastic rotation as well as lateral deflection decreases. The P-A moments, where A denotes
the lateral deflection at midspan, start to reduce as the brace straightens up. To sustain
yielding, the tensile axial load must increase. The brace model presented takes into account
the strain-hardening material behaviour in two plastic zones P1 and P2.

2.2. Model of tangent modulus history
As an experimental fact, the tangent modulus of elasticity deteriorates significantly
during inelastic cyclic. The tangent modulus history derived from the 150UC30 stub column
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cyclic test is shown in Fig. 3. Based on the experimental data, an empirical model was
formulated (Ikeda and Mahin, 1984) for the normalised tangent modulus e = E/E as a
function of the normalised axial force p = P/P,. Figure 4 shows two pairs of linear ideal-
isation curves utilised to define the decrease and increase patterns, as well as the relation of
these curves to the zones of a brace cyclic behaviour. The values of four parameters e, e,
ey and e, must be selected to account for available experimental data on the tangent modulus
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Fig. 4. Tangent modulus empirical model.
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of elasticity. These idealisation curves are used hereinafter to describe the changes in the
tangent modulus £, at different stages of a brace inelastic behaviour.

3. INCREMENTAL PHYSICAL THEORY BRACE MODEL

The physical model for a pin-ended brace member with plastic hinge at midspan is
shown in Fig. 1. The member is loaded with an axial load P, that causes an internal plastic
hinge moment M, an axial deformation J and plastic hinge rotation ®.

The axial force—plastic hinge moment interaction relationship (Appendix) is used to
define the fully plastic state in the centre hinge. States of force inside the interaction surface
are assumed elastic ; deformation hardening occurs outside this surface. When the current
yield surface is reached, the plastic flow rule (Drucker, 1960) is used to define the orientation
of the incremental plastic deformation vector.

For simplicity, basic equations are developed for the right half of a brace member
shown in Fig. 1. The deflected shape of the brace can be obtained by solving the basic
beam-column equation (Chen and Atsuta, 1977). Then, the plastic hinge moment—plastic
hinge rotation relationship can be established as:

EI
M =350) ¢ = 2()EDO M

where © = ¢/L, parameter v* = |P|L*/(E[) and y(v) is defined as follows:

v v .
Etani ifP <0

y(v) = . ) : (2)
— Etanhi itP>0

Hence, it follows that the plastic hinge rotation is expressed as:
O =GOED M. (3)

The model formulation assumes elastic axial and flexural deformations along the
length of the brace, and plastic axial and flexural deformations concentrated in the plastic
hinge. The total axial deformation increment, considering second-order effects. may be
expressed as:

ds = do, +dd, +dd, +ds,, (4)

where J, is the elastic axial deformation; §, is the geometric shortening deformation; o, is
the plastic hinge deformation; and J,, is the tensile yield deformation. The elastic axial
deformation increment, dé,, is expressed as:

4o, = {E(P)A} ' dP (5)

S

where A is the cross-sectional area.
Geometric shortening deformation, d,, of a brace member may be expressed as follows :

Il

5g

b0 —

~ f](A’(x))z dx

—h ()¢ = —h(MNP’L’ (6)

where
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Fsiny
Vv
" ifP <0
S
16 cos 5
l ) =
n e ) sinh v M
+1
— ” ifP>0
L 16 cosh’ 3
Eqn (6) can be introduced in an incremental form as follows:
. , | dAag(vy dv do(P)
do, = {SHL [ v dP(D,- +2h, (x)(D,-Wv dpr (8)

in which subscript ¢/ denotes the values of forces P, moments M and rotation ® before the
deformation increment dé takes place, and

-1 ifP<0

. 9
+1 ifP>0 ®

<S>={

A method of evaluating the derivatives d/,(v)/dv, dv/dP and d®/d P is given further on.

The plastic hinge deformation increment, dd,, is evaluated on the basis of the plastic
flow rule, resulting from Drucker’s Postulate (Drucker, 1960). 1t states that the incremental
plastic deformation vector must be in the direction of the outward normal to the yield
surface fat the corresponding stress point, i.e.

dé, = dif>
d®, = dify (10)

where f; and f; are the derivatives of yield function f with respect to P and M. Dividing
the first line by the second line in eqn (10), one can arrive at the following expression for
ds,

_fP dq)p
d5p~fM 1p 4P (11)

The derivatives f and f; can be easily calculated as soon as the explicit form of the yielding
surface or axial force-moment interaction curve is established. For the yield surface details
see the Appendix.

Finally, eqns (4), (5), (8) and (11) can be combined as

dP = K, dé (12)
where

EA

di,(v) dv _, do, fpd®,
R N} N — P ) Pl
ar dPCD' +2h, (V)P 4P +(E )f.M ar

K =

(13)

1+ {SHEAL? {

The tangent stiffness coefficient K, defines the inelastic brace properties for an incremental
solution. Equation (12) can be used to find the incremental axial force when the state is on
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the yield surface and is loaded inelastically. The plastic hinge moment increment can be
calculated from the consistency condition for a work hardening material :

df = 0. (14)
When the loading is elastic, dJ, is equal to zero, eqn (12) may be simplified as:

dP = (E.A) [1 F(SHEAL? {M 02 4 2h, )0, dq’*’}]l 6. a5

dv dPpP dpP

This general equation can be used to get the incremental forces when the state is inside the
yield surface, or when unloading from the yield surface.

From eqns (5)—(15), stiffness and state determination algorithms for a computer model
can be formulated. The incremental forces can be solved in terms of the incremental
deformations by use of either eqns (12) or (15).

4. PLASTICITY MODEL IN STRESS-RESULTANT SPACE

4.1. Assumptions

A plasticity model for the stress resultant ( force) and strain (axial and flexural defor-
mations) relationship of a steel section is developed. The incremental theory is employed
in developing constitutive equations for work-hardening materials (Chen and Han 198R).
This type of formulation relates the increment of plastic strain components d{¢P} to the state
of stress and stress resultant increment d{F}. Basic assumptions used in the development of
the incremental theory of work-hardening plasticity include :

o The existence of an initial stress resultant yield surface which defines the elastic limit of
the material.

e The hardening rule which describes the evolution of subsequent yield surfaces.

o The flow rule which is related to a yield function and defines the direction of the incremen-
tal plastic strain vector.

4.2. Basic approach

Consider a single yield surface that is a function of stress resultant {F}. The stress
resultant consists of two forces: P and M, where P is the axial force, and M is the plastic
hinge moment. Then, {F 1 is defined as follows

(F} = [P, M]". (16)

According to the incremental theory of work-hardening plasticity, a general consti-
tutive equation for an elastic—plastic work-hardening material will be derived in the form
of

d{F} = D*d{e} 17)

where D* is the elastoplastic stiffness matrix, which is a function of stress state and loading
history. For a given stress state and loading history, eqn (17) gives the stress resultant
increment d{F} for a given deformation increment d{¢} which constitutes a plastic loading.
This equation is needed in a numerical analysis of plasticity, such as a finite element analysis.

It is generally postulated as an experimental fact, that yielding can occur only if the
stresses satisfy the general yield criterion

SUF} {at,x) =0 (18)

where x = x(¢°) is an isotropic hardening parameter that depends on the plastic strain
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increment ; and {a} is the vector of coordinates of centre of the loading surface which are
also dependent on deformation increment. This yield condition can be visualised as a
surface in n-dimensional space of stress resultant, with the position of the surface dependent
on the values of the hardening parameters x and {«}.

When the current yield surface f'is reached, the material is in a state of plastic flow
upon further loading. The flow rule (Drucker, 1960) is defined as:

d
dfer} = dia—{% (19)

where d4 is a positive scalar function that will vary throughout the history of the straining
process. The gradient of the loading surface df/0{F} defines the direction of the plastic
strain increment vector d{eP}, while the magnitude of the vector is given by the loading
parameter dA.

If {n} denotes the unit normal to the loading surface f, then

o
.l .

(leta) tete))

where (3f/3{F})" = (6f]3P, ¢f/éM)™. In this case, the deformation plastic increment d{e} is
defined in accordance with the normality principle as follows:

d{er} = {n} dle”| 1)
where d|¢P| is the length of the plastic deformation vector.

4.3. Incremental stress resultant—strain relations
During the infinitesimal increment of stress resultant d{F}, the strain increment is
assumed to be decomposed into elastic and plastic components

d{e} = d{e°} +d{e"}. (22)

The elastic strain increments are related to stress resultant increments by a symmetric elastic
matrix D*. We can thus write eqn (22) incorporating the plastic relation (21) as:

d{e} = D*~' d{F} +d|e"|{n} (23)

or

d{F} = D*(d{e} —d{e*}) = D*(d{e} —dIe’|{n}). 24)

From the preceding equations, we can see that if we know the magnitude of the plastic
deformation djeP!, the constitutive relation is fully determined.
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Fig. 5. Decomposition of stress resultant vector d{F}.

The magnitude of the plastic strain vector d[eP| can be obtained on the grounds of the
following geometric considerations (Fig. 5). Consider an element in a plastic state A,
characterised by the stress resultant vector {F}. If we add to the current state {F} an
infinitesimal increment d{F} (additional loading) and the angle between the vector d{#}
and {n} is acute, additional plastic deformation will occur.

Let us decompose the vector d{F} into two parts:

d{F} = d{F}+d{F,} (25)

where d{F,} and d{F,} are the tangent and normal components of vector d{F} at the
current point A.
In addition, we can state the following evident relations for these vectors:

1n}Td{Ft} =0, (26)
d{F,} = {n}Td{F}{n} 27

and assume that the relationship between d{F,} and d{¢} in the form similar to the elastic
stress—strain relationship will be :

d{F,} =D d{e} (28)

where DM = diag [(E,A4) :(E,])] and E, may be referred to as the plastic modulus, yet
undetermined, which is a function of the current state of stress and hardening parameters.
Bearing in mind eqns (21) and (25)—(28), we get

{mTd{F} = {n}T d{F} + {n}Td{F.},

{n}Td{F} = {n}'D"d{&"},

{n}Td{F} = {n}"D"{n} d|¢"|,

and, finally,
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{n}Td{F
djeP| = r"z’Tﬁ‘l{}; (29)
tn; D" {n}
From eqn (21), plastic strain increment takes the following form :
T dJ’F ! T
atery = WO gy (0)
{n}" D" {n} {n} DM {n}

in which the unit normal to the loading surface at point 4 is defined by eqn (20).

4.4. Loading/unloading criterion

The loading/unloading criterion enables continuing plastic flow to be distinguished
from elastic unloading. In the case of a multiaxial stress state, the loading/unloading
criterion must be clearly specified. It is known that plastic flow occurs only when the stress
point is on the loading surface and the stress incremental vector d{a} is directed outward
from the current elastic region.

An additional plastic deformation will occur if the angle between the vector d{s} and
{n} is acute. That is, the continued loading occurs if

f=0 and {n}d{s} >0. (31)

On the other hand, if these two vectors {#} and d{¢} form an obtuse angle, unloading will
occur. Thus, the unloading criterion is

f=0 and {n}d{c} <0. (32)

However, eqns (31) and (32) can not be directly applied to the case of stress resultant space
and cyclic behaviour of a brace member. This is because the brace member undergoes
plastic deformation in such a way that the components of vector d{F} retain their positive
values over the course of plastic loading both in tension and compression. This imposes an
additional restriction on the relationship between the unit vector {n} and the stress resultant
vector d{F}.

When in Zone P2, the requirement of positiveness of both components of vector d{F}
is ensured by maintaining the direction of vector d{F} as shown in Fig. 6. In other words.
an angle f, between a line M = M, and the direction d{F} must be within a range
0< B <p.ie.

O<tanf, <tanf (33)

where tan §, = dM/dP (dP and dM are the components of vector d{F}). From Fig. 6, the
angle f and consequently tan §, can be found as follows:

_T
ﬁ—z_:x’
anf = tan (® —x) o 1 (34)
anf = tan 3 o = anz’
but
tana=—‘&,

fe
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Zone P1

Fig. 6. Loading criterion for a brace member.

and

Sr
tanff = — .
P>
From eqns (33) and (34), if follows that
aM fe
0<dP<_f,M’ (35)
and
0<dM < —dP}l, dP>0, fp>0, and fyu <0.
M

This equation can be considered as a sufficient condition of plastic flow within Zone P2 for
a brace member.

Similarly, the loading criterion for Zone Pl can be derived from geometric con-
sideration in Fig. 6. To ensure that plastic flow will occur in this zone, the following
condition must be satisfied

0 <tanf, <tanf (36)

where tan f, = dP/dM. The angle B is determined, in this case, as follows
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ﬁzg_“a
tanfi =t z 1
SRS T T Gna’ (37)
but
tanaz—&,
Sm
and
Sm
tanff = ——=—.
b=-7

Equation (36) can be re-written in the following form :

dpP fm
and
Sfr
dM>-—de—f, dP >0, fep<0, and fy >0.
M

Equation (38) establishes a sufficient condition of plastic flow within Zone P1.

4.5. Evaluation of plastic hinge deformation for a work-hardening material
Accomplishing the matrix operations in eqn (30), we get the following expressions for
the incremental deformation vector components

5 _ JelfpdP+fy dM)
T EASHED
o _ IuUpdP+fydM)
T+ (ED

(39

Dividing the first equation in (39) by the second one, one can arrive at the expression for
dd, which is identical to eqn (11).
The derivatives for @, now take the following form:

dy dv
do, |fplfm dvdP
=% M T Sm | 40

In this equation, the plastic hinge moment M, plastic hinge rotation @, and parameter v,
are calculated at the current stress point A.
From eqns (11) and (40), one can get the formula for dJ,
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dy dv
So | folfm  dvdP

do, = &, —
fm| M, 7(v;)

(41)

This formula is used in the incremental physical theory brace model, which takes into
account the work-hardening effect.

4.6. Calculation of the plastic hinge moment increment for a work-hardening material
From eqn (39), an increment of plastic hinge moment can be defined as follows:

T Ay Je
[(E A)f +(Ep1)f} p =y dP >0 (42)

in which an axial force increment, dP, is determined from eqn (12); and a plastic defor-
mation increment, dé,, is defined above.

Equation (42) can be considered as the generalised expression for the plastic hinge
moment increment, since, in the case of £, = 0, it yields the consistency condition for a
perfectly plastic material

am = —2rqp. (43)

JM

or
frdP+fydM =0.

On the other hand, this equation can be shown to satisfy the loading criterion for a work-
hardening material in the stress resultant space discussed in Section 4.2.

In Zone P1, where f, < 0. f, > 0,dd, < 0and dP > 0, it is evident that d M is positive
for all points within Zone P1, and, therefore, eqn (42) gives:

fr fr S
(e + 44
dM ( fMdP> |:(EA)f (E[)f:| p>0 (44
or
dM > ;—;dP

Similarly, in Zone P2, where fp > 0, f)y <0, dé, > 0 and dP > 0, from eqn (42) one can
get:

dM— (—%dP) [(E A)]j;P +(E, 1), }dép <0 (43)
or
dM < —;idP

It is seen that eqns (44) and (45) are exactly the plastic flow conditions formulated in
Section 4.2 for a work-hardening material.
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4.7. Calculation of the plastic modulus history curve

The plastic modulusis recognised as the key parameter in describing material behaviour
under stress reversals. There are several possible forms for the analytical function of E,.
The models, based on the bounding surface plasticity model (Dafalias and Popov, 1976;
Tseng and Lee, 1983), typically accept the following form:

)
E, = ES+h ( - 5) (46)

where 4 is the positive shape parameter; d is the difference between the stress point on the
loading surface and the matching point on the bounding surface ; §,, is the distance between
the two previous points when the plastic loading initiates ; £, and E] are the plastic moduli
corresponding to the yield surface and the bounding surface, respectively.

The analytical expression for plastic modulus, proposed in this model, is based on the
tangent modulus idealisation curves (Fig. 4) and is given by :

(47)

in which A is the shape calibration parameter, which can be determined through the
experiment made on the brace members under cyclic loading, and for a given value of E.
This introduced shape calibration parameter accounts for: the linear idealised nature of
the tangent modulus history model; the idealised representation of the yielding zone as the
hinge point at the midspan; etc. The plastic modulus history as compared to the tangent
modulus history is shown in Fig. 7. One can observe that for E = E, E, approaches
infinity (i.e. as is expected for elastic behaviour), and the plastic modulus values decrease
monotonically as the tangent moduli and axial forces decrease continuously, thus satisfying
the necessary conditions.

It must be noted that the proposed model, as distinct from the previous models, is
capable of accounting for the deterioration of the tangent modulus through variation of
the value of P,, in accordance with the hardening rules used. The result is that the curves
are not stable any longer ; and the same is true for the plastic modulus curves. It is believed
that the models for the tangent modulus history and the plastic modulus history presented
in this manner will better represent the analytical prediction of the cyclic behaviour of a
brace member.

In Fig. 7(a), two idealised tangent and plastic modulus curves are shown. The plastic
modulus curve is derived by the use of eqn (47). In order to verify this curve, it was derived
analytically from the experimental data (Leowardi 1994).

This verification involved the following steps:

(1) From eqn (42), we get

M+ 25 ap

— S (48)

{(EA) Jr + (EI)f‘—M] A,

fm fr

by |

where AP and AM are the increments of axial load and plastic hinge moment from
experimental data.
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Fig. 7. Tangent and plastic modulus histories : (a) analytical models ; (b) plastic modulus values via
experiment.

(2) The increment A, can be derived from eqn (11)

_Jr 4o,

Ad, =7 P

AP (49)

in which d®,/d P is defined by eqn (40).
(3) The relative plastic hinge rotation can be evaluated from the equilibrium condition
M,

RRRTOTCR, (30

where v;, M; and @, are determined at the current stress point.
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A scatter plot which shows the joiht distribution of axial force and plastic modulus, is
depicted in Fig. 7(b). The trendline, calculated by the least squares fit, displays the trend
of the plastic modulus behaviour, which is similar to the trend shown in Fig. 7(a).

5. MODELLING OF WORK-HARDENING EFFECTS FOR A BRACE MEMBER

5.1. Hardening rules

The existing and widely-used plasticity models differ from each other in their use of
the hardening rules which specify the modification of the yield condition during the course
of plastic deformation. To characterise the observed phenomena in the cyclic material
behaviour, the yield surface and the fully plastic interaction curve can be allowed to expand
(isotropic hardening) and/or translate (kinematic hardening) in the stress resultant space.
Within the scope of this paper, the simplest hardening rules are employed. The motion of
the yield surface can be either in the direction of plastic strain rate (Prager’s Rule), in the
direction of the vector connecting the centre of the yield surface to the current load point
(Ziegler’s Rule), or in the direction of the stress increment (Phillips’ Rule).

5.2. Experimental observations

The phenomenon of cyclic strain hardening was observed experimentally for ail speci-
mens tested (Leowardi, 1994). The cycle-by-cycle comparison of the theoretical fully plastic
P-M curve and the P-M interaction curves obtained experimentally is shown in Fig. 8. As
one can see, in the earlier cycles, the experimental P—M interaction curves tended to follow
the fully plastic theoretical curve. After the fourth cycle, both specimens demonstrated
rapid buckling load deterioration along with the increase in the maximum tensile load
capacity and in the value of the fully plastic moment M,. During the later cycles, both
struts developed significant strain hardening, as represented by shifts in the experimental
P-M curves. The signs of strain softening in the compression side during the later cycles
can also be seen.

The increase in values of the experimental maximum tensile load and the fully piastic
moment from cycle to cycle supports the trend that the yield surface expands isotropically
in the stress resultant space. On the other hand, the deterioration in the buckling load from
cycle to cycle clearly indicates the presence of the Bauschinger effect upon reverse loading ;

1.2 o
[ Cycle 3 Cycle 4
06 et v
g : f
T 06 2 -
o U T i
5 D |
F -1.2
s
3 12 . —
N //\ Cycle 6 i \ u Cycle 8
c 086 - S
2 N :
0 —— H : 7
; ;
V. | ——— -
0.6 \ \'> ]
2 I

-1.2 -0.6 0 0.6 12 1.2 -0.6 0 0.6 1.2
Normalized plastic hinge moment, M/M,

Fig. 8. Comparison of fully plastic and experimental P-M interaction curves.
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but, purely isotropic hardening is not associated with any direction of loading ; thus, it is
one of the less suitable models for stress reversals with the Bauschinger effect.

Since all hardening rules are of phenomenological nature and were derived from the
experimental observations on specimens different from brace members, the verification of
the computation models against the experimental data has to be performed with an emphasis
on how to describe the change of the yield surface for a brace member under stress reversals.

5.3. Purely kinematic hardening
In this section specific kinematic hardening rules are considered, and their capability
to describe the hardening phenomena with regard to the brace cyclic behaviour is evaluated.

Prager’s kinematic rule. If the Prager’s hardening rule (Prager, 1956) is used to deter-
mine the parameter {«}, then the incremental movement of the subsequent yield surface
centre can be calculated as follows

ay = 5 2 AP M
fe+lm
fodPtfdM
doyy = e— T 51
I Gh

From Fig. 9, it can be seen that the shifts of the interaction curve in the direction of axial
force are so negligible that it moves practically along the M-axis only. It results, on the one
hand, in an increase in buckling load capacity and, on the other hand, in a decrease in
maximum tensile load capacity [Fig. 10(a)]. As for the interaction curve in this case, one
can see a significant decrease in the developed plastic hinge moment in the tension side
[Fig. 10(b)]. For that reason, the results obtained by the use of this hardening rule contradict
the experimentally observed expansion of the interaction curve in both the positive and
negative direction of plastic hinge moment.

Phillips’ kinematic rule. Experimental results, reported by Phillips and Lee (1977),
indicated a translation of the yield surface along the direction of the stress increment. In

600
Phillips' Rule
400
z
=3
8
5 200
s
Z
0 Prager's Rule
-200 — ' :

0 5 10 15 20
Plastic hinge moment (kNm)
Fig. 9. Yield surface centre locus for different hardening rules.
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Fig. 10. Effect of kinematic hardening (Prager’s rule): (a) P-d curve; (b) P-M curve.

this case, the following simple expressions for the incremental motion of the yield surface
can be derived as:

dOCp = dP,

day = dM. (52)
It is worth noting that the increments dP and dM are always of positive sign during the

course of plastic deformation. Because of this, eqn (52) predicts the motion of the yield
surface upward as seen in Fig. 9. The resulting axial force—axial displacement curve for a
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double fixed specimen is shown in Fig. 11{a). One can see that, in the compression side, the
cyclic behaviour of a brace member is modelled well including the deterioration in buckling
load, but there is nothing like strain hardening in the tension side.

5.4. Independent and mixed hardening rules

From the comparison presented above, it may be concluded that neither of the con-
sidered simple kinematic hardening plasticity models is able to predict the true behaviour
of a brace member. Whereas the purely isotropic hardening model is capable of predicting
the expansion of the yield surface, it failed to represent the Bauschinger effect exhibited by
steel. On the other hand, the Baushinger effect can be handled by the use of the kinematic
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hardening rule. There is evidently a strong case for a combination of kinematic and isotropic
hardening, i.e. a mixed hardening rule, as well as for introducing an independent hardening
rule, which states that the direction of the motion of yield surface under a tension loading
and under a compression loading are independent of each other.

The isotropic hardening rule states that the progressively increasing yield stresses under
both tension and compression loading are always the same. The relationship between the
hardening parameter x and the accumulated plastic strain &, which characterises the
hardening process of a material, has been calibrated on the uniaxial cyclic stub column
stress test (Remennikov and Walpole, 1995). The function used to define the hardening
parameter  is based on one of the fully cycled curves and has the following form:

K= hy x (&) +f, (53)

in which f, is the nominal yield stress of the material, and 4, is the calibration parameter
(#, = 6875 is used here).

The independent hardening rule is introduced in this report to reflect the hardening
phenomena observed during the tests on the brace members. As detailed earlier, the stress
resultant increments d P and d M retain their positive values over a course of plastic loading.
This fact consequently causes the motion of yield surface predominantly in one direction.
To better represent the strain hardening effect for the brace members cyclic behaviour, it is
proposed to introduce two different hardening rules under a tension loading and under a
compression loading. Taking the Phillips’ hardening rule eqn (52) as the basis for further
development, the proposed modification takes the following form

For tensiondap = dP, and for compression deap = d 2P,

doy = —dM doy, = dM. (54)

It 1s expected that the proposed modification will improve the prediction of the strain
hardening effect both in the tension and compression side, since it allows for the yield
surface moving so that both the strain hardening in tension and the Baushinger effect can
be modelled.

A combination of isotropic and kinematic hardening allows the yield surface to expand
and translate simultaneously in stress resultant space. The total increment of plastic defor-
mation can be split into two collinear vectors :

d{e?} = d{ek} +d{ek; (55)

where d{ef} is associated with the expansion of the yield surface (isotropic hardening) and
d{e}} is associated with the translation of the yield surface (kinematic hardening).

If we assume that the contribution of each term to the total plastic deformation
increment is constant over the course of loading, then there exists a weighting coefficient,
W, such that these two components can be written as follows:

d{er} = wd{e"},
dief} = (1-W)d{e"} (56)
in which W is within the range 0 < W < 1. With the mixed hardening rule, different degrees

of the Bauschinger effect can be simulated by adjusting the two hardening parameters, x
and {«}, which define the size and position of the yield surface.
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Fig. 12. Comparison of analytical (with mixed hardening) and experimental P—J curves : (a) pinned—
pinned brace member; (b) fixed-fixed brace member.

Figure 12 shows the result of using the independent and mixed hardening rules for
predicting behaviour of specimens with different boundary conditions under cyclic loading.
The presence of all phenomena mentioned above can be recognised. As one can see, in both
cases the implemented hardening rules enabled the model to simulate the shifts of yield
surface during later cycles in tension, the increase in the value of M, in compression, as
well as the deterioration in the buckling load with cycling.

6. SUMMARY AND CONCLUSIONS

Some previous analytical models for simulating the cyclic inelastic behaviour of steel
bracing members have been reviewed. Based on this review, it appears that existing physical
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theory brace models fail to account for certain behaviour phenomena. Most of these models
assume elastic—perfectly plastic material properties. This results in inaccurate analytical
predictions of member behaviour. None of these models, therefore, can account for the
following features: (1) the Bauschinger effect ; (2) local buckling; (3) the gradual spread of
plastification along the length of the brace member. In addition, existing physical theory
brace models express axial displacement as a function of axial force. Thus, these models
require additional iterations to estimate the value of the axial force for a given displacement,
when being used in conjunction with the matrix displacement method to analyse a real
structure. An incremental physical theory model has been developed herein to address these
problems.

A plasticity model in stress—resultant space was developed in order to describe work-
hardening phenomena observed during an experimental program made on the different
types of brace members. The explicit expressions for components of a plastic strain vector
were presented in an incremental form. This enables the inclusion of the plastic deformation
increment for work-hardening material into the incremental physical theory brace model
to account for the work-hardening effects.

To ensure the plastic flow takes place under cyclic loading, the loading/unloading
criterion, which takes into consideration some features of the brace member behaviour,
was formulated. The formulae for the plastic hinge moment increment, which satisfies the
plastic loading criterion both in Zone P1 and Zone P2, were derived from the formula for
the axial plastic deformation for work-hardening material.

The plastic modulus, £, is recognised as the key parameter in evaluating material
behaviour under stress reversals. An analytical expression, which relates the plastic modu-
lus, E,, to the elastic modulus, E, and the tangent modulus, E,, was proposed. The tangent
modulus model was that proposed by lkeda and Mahin (1984) for the refined physical
theory brace model.

To study the observed phenomena in the cyclic material behaviour, several hardening
rules of the one-surface type were employed to evaluate the effect on the analytical P-J and
P-M curves. The comparison revealed that neither of the considered simple hardening
plasticity models was able to predict the true behaviour of a brace member under cyclic
loading. Then, some modifications were proposed to the Phillips” hardening rule and the
mixed hardening rule was introduce to better represent the analytical prediction of a brace
member cyclic phenomena. These hardening rules were implemented into the quasi-static
computer program “BRACE MODEL” and computer studies made on the brace members
demonstrated that the incremental physical theory brace model was able to represent cyclic
buckling behaviour very effectively. In addition, this model has been incorporated into the
inelastic dynamic frame analysis program “RUAUMOKO"” (Carr, 1996) in order to enable
evaluation of the inelastic seismic response of the steel braced structures.
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APPENDIX

An interaction curve for the initial yielding may serve as a yielding function for the cross section in the
absence of residual stresses. A single, as well as continuous function for structural steel was obtained by Orbison
et al. (1982). The exact interaction curves for the [S0UC30 section are depicted in Fig. A1. The step wise regression
analysis was carried out making use of the data from Fig. Al. The modified function, which best fits the exact
solution data for the 150UC30 section, now takes the following form

PP Ami+mt +4.05p7m? +8.26p m?2 +3.68p° m2 + 10.4p°m’ +4.65mim’ = 1 (A1)

where p = P/P, = normalised axial force; m, = M,/M, = normalised strong axis bending moment; and
m, = M,/M, = normalised weak axis bending moment.

The comparison of the approximated and exact solutions is shown in Fig. Al. It is seen that eqn (Al) is in
good agreement with the plastification values. The correlation is particularly good for both the axial force-strong
axis bending interaction and the axial force—weak axis bending interaction. Taking into account either the effect
of weak axis bending or the effect of strong axis bending, formula (A1) can be reduced to the following equations

PrAmi43.68p ml +10.4p°m} =1, (A.2)

PP 4+mi4+4.05p ml +8.26p°m; = 1. (A3)

In this paper. eqn (A2) was used as the yield surface f for evaluation of the plastic deformation of a brace member
under an out-of-plane inelastic buckling.
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